
c h a p t E r  7

A Learning Analytics Approach to Assessing 
Student Risk in Active Learning

mohsEn dorodchi, mohammad J. mahZoon,  
mary lou mahEr, and ailEEn BEnEdict

Introduction

L earning analytics is an emerging discipline within data science. It is analytics that is con-
cerned with developing methods for exploring the unique and increasingly large- scale 
datasets collected from educational settings, including the collection, analysis, and visu-

alization of such educational data. The goal of the analyses and visualizations is to understand 
and improve students’ learning and their learning environments. These methods are devel-
oped and applied in the same way as general data analytics, including exploiting statistical 
and machine learning for prediction, clustering, outlier detection, knowledge discovery with 
models, text mining, knowledge tracing, relationship mining, etc. to search for unobserved 
patterns and underlying information in learning processes (Agudo- Peregrina, Iglesias- Pradas, 
Conde- Gonzáles, & Hernandez- García, 2014).

Learning analytics of a course includes the gathering and analysis of data about a course and 
its students with the goal of improving its learning environment. The tracking of a student’s 
progress and potential factors for success and failure can be valuable for the evaluation of the 
course. Coursework could then be redesigned by exploring these factors and learning more 
about student patterns, such as examining how student attitude and motivation can affect their 
success. These insights could then help create a better learning environment for the students 
over time. By using computer science techniques and creating visualizations for these factors, 
we are able to discover and understand patterns more easily, something that could be much 
more difficult to accomplish by simply looking at the raw data itself.

Learning analytics has been used in many situations. For example, Cherenkova, Zingaro, 
and Petersen (2014) explored which student difficulties arise within beginning computer 
science courses by mining data from CodeLab, a “web- based interactive programming prob-
lem system,” finding that conditions and loops are the main challenges for students. They 
also encourage the use of large data from many institutions to lead to greater insight. Agudo- 
Peregrina et al. (2014) have applied learning analytics, specifically bivariate correlation anal-
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ysis, to find the correlation between interactions (i.e., student- to- student interactions within 
the learning management system [LMS], student interactions with LMS content, and student 
interactions with the professor) and student performance. In another study, learning ana-
lytics was used to identify significant behavioral indicators of learning. Results showed that 
students’ regular study, times of assignment submission, number of login sessions, and proof 
of reading course information were all significant factors in predicting course achievement 
(You, 2016).

Agudo- Peregrina et al. (2014) extracted different data from the LMS, such as student- to- 
student interaction inside the LMS, student interactions with LMS and content of the LMS, 
and student interactions with the professor within the LMS. Furthermore; they applied sta-
tistical methods, such as bivariate correlation analysis, to find the correlation between such 
interactions and student performance for an online as well as a face- to- face class. The results 
showed some correlation from mid- to- strong for the online class; however, for the face- to- face 
class, they found a no- to- weak correlation. The differences between the course structures and 
LMS structures are not very clear.

Learning Analytics for Student Risk Analysis

Research is drawn from various areas that view analytics in different perspectives or dimen-
sions. Gašević, Dawson, and Siemens (2015) identified three common dimensions in learning 
analytics research: design, theory, and data science. For example, action research (McNiff & 
Whitehead, 2011) and personalized adaptive learning best fit into design or theory categories 
because their research focuses on improving teaching practice. However, our research con-
tributes to learning analytics from a data science perspective and uses research in theory and 
design dimensions to make sense of data. 

From the data science perspective, we focus on the issue of predicting student success/risk 
using analytical methods. Research in student risk analytics helps instructors keep track of 
student performance, and given the prediction results, policymakers can plan for improving 
retention by helping at- risk students. 

Depending on the goal of the research, student risk analytics employs one of two general 
ways to define success and risk. The first method is to consider a student’s final grade. For ex-
ample, a student with an acceptable final grade for a course (usually C and above) is deemed 
successful in the course while others are considered at- risk. Other studies use course comple-
tion rather than the final grade to determine success. This definition of success is often best 
used when analytics is done at a micro level by looking at individual key courses and focusing 
on student success in those courses. Analytics in this area contributes to better student per-
formances by identifying issues that students may have while taking courses and by providing 
insights to create interventions to help fix those issues. The second method is to look at student 
graduation. For example, a student graduating “on- time” is successful, while one who does 
not is at- risk (of dropping out). This definition of success and risk can be useful for academic 
leaders and executives who need to check the health of the education system from the macro 
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level. Analytics in this domain analyzes student behaviors to identify issues, such as flaws in 
curriculum design.

Regardless of how success and risk are defined, research in student risk analytics needs to 
be confirmed with some data source, such as the LMS, to obtain granular and meaningful data 
from students. For example, Macfadyen and Dawson (2010) used Blackboard Vista LMS to ex-
tract 15 features correlating with students’ final grades. These features include the total number 
of discussion messages posted, mail messages sent, and assessments completed. Macfadyen 
and Dawson (2010) used logistic regression to classify students as successful or at- risk with 
81% accuracy. As another example, Wolff, Zdrahal, Nikolov, and Pantucek (2013) used click 
behaviors in the virtual learning environments as the data source to identify students at- risk 
using a decision tree model. Moreover, Jayaprakash, Moody, Lauría, Regan, and Baron (2014) 
combined the log data from student interactions within Sakai Learning Management System 
with student demographics, aptitude data, course grades, course- related data, and partial con-
tributions to students’ final grades such as individual assignment grades. 

In terms of the models used in student risk analytics, we refer to surveys done by Romero 
and Ventura (2007) and Romero, Ventura, and García (2008) showing different approaches 
taken in the learning community to discern student behavior using machine learning or statis-
tical methods. Generally, the data mining approaches discussed in their surveys used statistics 
or machine learning techniques operating on a feature vector representation of each student 
having data such as demographic information, course grades, and LMS logs. Several others, 
such as Mohamad and Tasir (2013) and Peña- Ayala (2014), review approaches that used dif-
ferent analytics with similar feature sets for their vector representations. 

When it comes to the analyses of student learning, the major question is what student- 
related features can be used to accurately analyze performance, such as study patterns, ex-
hibited emotions, and temporal features. By analyzing these features, it is possible to extract 
crucial information, such as identifying at- risk students to improve the course or to intervene 
on their behalf. In a study of 350 college students, a learning analytics model was used to 
predict course achievement as measured by their activities inside a LMS (You, 2016). The 
study demonstrated that their pattern of study, late submissions, and whether they reviewed 
the materials was predictive of performance. In another study, students’ emotional reactions 
were correlated with student performance on programming assignments (Lishinski, Yadav, & 
Enbody, 2017). This work influences our use of sentiment to identify risk.

In this chapter, we look at learning analytics methods, particularly the sequence analytics 
method, a temporal approach to analyzing data. In particular, we look into course- related data 
that can be extracted from the LMS and/or student reflections pointing directly or indirectly 
toward their learning in the classroom.

Learning Analytics Using Time

During the last decade, increasing research in the data mining and machine learning commu-
nities have produced many approaches to analyze time- related raw data to identify trends and 
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unexpected behaviors over time. However, these approaches still have not been widely adapted 
for learning analytics, and state- of- the- art approaches in student success and risk analysis do 
not consider temporal aspects of data.

Molenaar (2014) argues that temporal aspects of student data deserve more attention, and 
temporal analysis yields a paradigm shift addressing new research questions in learning an-
alytics. Similarly, previous work in computer- supported collaborative learning (CSCL) and 
self- regulated learning (SRL) emphasizes the importance of temporal features in student data 
(Kapur, 2011; Bannert, Reimann, & Sonnenberg, 2014).

There are potentials in time series analysis, data stream mining, and sequence pattern min-
ing that can contribute to analyzing student data while preserving the temporal dependencies. 
However, for each of these approaches to be used with student data, there are potential obsta-
cles as described below.

Time Series
Time series analysis aims to arrive at a mathematical or statistical model to describe a series of 
observations over time, and it has applications from the stock market to weather forecasting. 
Various methods have been proposed in time series analysis literature to solve prediction, 
classification, and regression problems. All of these models were built on the same assump-
tions that (a) the data are in a numerical format, and (b) a significant number of data samples 
are available. Neither of these assumptions is necessarily true for student data because it is 
highly heterogeneous, containing ordinal and categorical features in addition to numerical 
features. Even though some data items such as grades and other performance features can be 
converted to numerical data, many features such as reflection data and quiz answers cannot be 
represented in numbers while preserving meaning.

The data we have for each student are limited and uniquely different from that of other 
students. The data about a single student cannot be generalized to a format that reconciles it 
with the data on all students without significant information being lost. The amount of data 
available for each student is also unique and can vary widely. Additionally, time series analysis 
usually looks for recurring patterns or regularities within a time period. In contrast, student 
data are temporal but not periodic. Students’ progress each week as they acquire knowledge 
and prepare for the next activity. While time series can still be applied to student data to iden-
tify periodic patterns for numerical features, our sequence data facilitate detecting trends and 
irregularities in sequences having heterogeneous and variable length data items.

Data Stream Mining
Data stream mining is a subdomain of data mining that presents methods to efficiently process 
continuous massive sequences of data items called streams. These methods can watch for “con-
cept drift” (Widmer & Kubat, 1996) when the general statistical properties of the target predic-
tion change. Methods in data stream mining adapt to the changes in the stream to produce bet-
ter prediction for new instances of data. For example, Hulten, Spencer, and Domingos (2001) 
present a model to maintain and update a decision tree for concept- drifting data streams. The 
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model is always up- to- date with the latest instances of the stream while discarding old concepts 
that were changed over time. Adapting data stream mining ideas to the student data analytics 
faces several challenges. In student data analytics, we are not dealing with massive continuous 
data streams. Student sequences have a clear starting point and a duration of several weeks, 
and therefore the streams are not massive and content is sparse. Furthermore, data stream 
algorithms do not keep track of changes in data since they discard the changed concepts to 
account for the newest ones. To interpret students’ behavior and investigate what it means to 
be at risk, we need to capture changes in trends and identify unexpected patterns.

Sequence Pattern Mining
Another subdomain of data mining that works with sequences is sequence pattern mining used 
to identify frequent sets of items or patterns in data or strings (Agrawal, Imielinski, & Swami, 
1993). This domain is generally used for identifying behavior patterns of consumers in the 
business domain. One such approach detects frequent items bought together from a dataset 
of all transactions. For example, Padmanabhan and Tuzhilin (1999) propose an interestingness 
measure to filter all frequent items to obtain interesting items that happen to be unexpected 
transactions, contradicting beliefs. 

We can make an analogy to transfer ideas from sequence pattern mining to student sequence 
data mining. If we treat each student sequence as a transaction, then the task becomes frequent 
events happening together in student sequences. However, there are certain assumptions in 
sequence pattern mining that make it hard to continue the analogy further. For instance,  
in sequence pattern mining, it is assumed that we know beforehand about all potential items in 
transactions (i.e., all items being sold in a store). This assumption holds in business and mar-
keting because the number of items is finite and known. However, student data sequences have 
a wide range of possibilities such as quizzes taken, assignment grades, forum participation, and 
other academic and nonacademic activities. It is a daunting task to generate all potential events 
for a student sequence.

Sequence Data Model

We define a student sequence as data items that are grouped into temporally ordered structures 
called “nodes.” For example, a node may represent a semester and may contain a student’s data 
items related to that semester: courses taken, grades received, extracurricular activities, and so 
on. This grouping gives context to the data items and allows for analysis at the level of both 
data items and nodes.

Figure 7.1 illustrates the structure of the sequence data model in which information about 
a student is grouped by semester. The sequence starts with an initial node that captures attri-
butes outside of the node- based temporal sequence, such as demographics and prior academic 
achievement. A node is then included for each semester the student is enrolled and finishes 
with an outcome node. The properties that characterize a sequence data model include time 
dependency, contextualization, segmentation, and storytelling.
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Time Dependency. The sequence data model explicitly represents that the later data items 
can depend on former data items. This allows the explicit representation of temporal depen-
dencies, such as the correlation between fi nal grade and student assignment grades. In com-
parison, a vector representation assumes that data points are independent of each other, and 
features (independent variables) do not have a correlation with each other.

Contextualization. The grouping of data items into nodes gives context to salient features 
that are selected for analysis. For example, if each node groups diff erent information through-
out the course mostly coming from the LMS for a given week within the semester, then data 
can be identifi ed as salient features within each node, such as grades of the activities, while 
other features, such as student activities, are the context of the salient feature.

Segmentation. The nodes in a sequence allow us to represent the data in segments. Diff er-
ent choices for the beginning and end of each node defi ne a principle for a window of time and 
allow the data model to capture a diff erent granularity for the segments, for example, semesters 
versus weeks. Access to LMS data makes fi ner- grained node segmentation possible, which may 
lead to more timely assessments of academic risk.

Storytelling. A sequence of information expresses a student’s learning events throughout 
a particular course. This property enables us to view each node as a collection of student data 
from course events happening during a particular week in a semester. Moreover, there is an 
opportunity to infer a narrative from the nodes to tell a story about a specifi c or typical student 
in order to hypothesize about success or risk.

Applying Learning Analytics to a Course

To verify the eff ectiveness of our active learning course, learning analytics methods are applied 
to a course as explained in the following sections (Dorodchi et al., 2018). 

Data Collection 
The data were collected from the LMS from 91 university students enrolled in the Introduction 
to Computer Science (CS1) course in the spring semester of 2017. The course demographics 

Figure 7.1. Th e structure of the sequence data model in which information about a student is grouped 
by semester.
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consisted of 21.9% female students and 72.5% computer science (CS) majors. The data have 
three main categories per student:

• Student background information
• Student performance scores
• Student reflections and self- assessments

Each of the above three categories includes specific attributes used in our algorithm as fea-
tures. More specifically, student background includes attributes such as age group, gender, and 
major. Student performance scores are numerous as is typical in an active learning classroom in 
which students are submitting items for preparation, in- class and in- lab activities, and assign-
ments outside the classroom. In the example in this chapter, we include grades for all quizzes 
(18 total), pre-  and postlabs (16), long assignments (four), lecture tests (four total, including 
three during the semester and one final), lab tests (four), lab/lecture activities (37), and extra 
credit activities (four) for a total of 87 different columns per student. Reflections are infor-
mal surveys students take regularly after class (both labs and lectures) activities, assignments, 
quizzes, and tests for a total of 23 reflections per student. Students reflected on their learning 
of different course topics, as well as on the learning processes, group activities, or the tests 
and assignments. Some of the reflections, therefore, were mandatory as a part of the activity 
while others were optional extra credit activities. We ended up with a heterogeneous dataset 
for different reasons: (a) we have both numerical and textual data; (b) data items’ frequency 
of occurrences are different such as weekly, biweekly, or monthly; and (c) the data included 
objective and subjective measures, as well as self- assessment or group assessment by students.

All the 110 different grades and quantified reflections are spread over our dataset, based on 
the date of the activity, which highlights their strong temporal dependencies with each other. 
Therefore, these data are a good candidate for using temporal data analysis models. It should 
be emphasized that the temporal dependency of the data items comes from the fact that stu-
dents must do different types of activities in the lab and lecture as explained while providing 
reflections over time. The activities are all dependent on and build on each other. In addition, 
students were reflecting on their learning and outcomes of activities that suggest the strong 
dependency as shown in Figure 7.2.

In other words, it is possible that a student who received low grades for the first few weeks 
of the course might change their study pattern to make up for the low performance. Conse-
quently, we have dependencies in activities themselves as well as dependencies in the time 
between reflections and activities.

Student Data Model
Our goal was to discover the trends of students’ activities throughout the semester, predict the 
student outcome (success or fail), and discover the impact of reflections on the prediction. To 
do so, we built a temporal data model, called the “student sequence model” (Mahzoon, Maher, 
Eltayeby, Dou, & Grace, 2018). In this model, we put all the data for one week into one node as 
shown in Figure 7.2. Next, we connected the nodes to form a sequence. The sequence was then 



7. Learning Analytics Approach to Assessing Student Risk | 93

passed to a signature generation submodule followed by the learning analytics submodule for 
fi nal determination, as shown in Figure 7.3.

Analysis: Sequence Model versus Feature Vector Model
While the student sequence model uses nodes to sort and group data items temporally, a more 
common method uses feature vectors to represent data items. Feature vector representation in 
knowledge discovery and data mining constructs features vectors for data items in which each 
data item is represented by one vector with a fi xed set of features or dimensions. For example, 
in student data, each data item could contain a vector of one student’s performance in a certain 
course or program. The features of the vector could then include the student’s background 
information (e.g., demographics and course information) and the student’s performance (e.g., 
grades, assignments, and activities). 

Feature vector representation makes strict assumptions about data dependencies that en-
able the use of conventional machine learning tools. This representation assumes that vectors 
are independent of each other and features are independent of other features. These indepen-
dency assumptions, as well as the fi xed length of the vectors (i.e., the number of features), make 
the application of machine learning tools widely available. 

Figure 7.2. 

Figure 7.3. 
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However, having that strict assumption for data dependencies in vector representations 
ignores the temporal correlations in student data — something we wanted to emphasize. A 
typical example of such temporal correlation is the correlation between the final grade and 
different types of grades (e.g., class activities, lecture tests, assignments) over time for the same 
course. The order in which these grades occur provides important information for predicting 
success or risk. However, that order is discarded in feature vector representation due to its 
inability to represent temporal correlations.

Structure of the Sequence Model
Our sequence model consists of 19 nodes: one node at the beginning of the semester for student 
background data, 17 intermediary weekly nodes that include grades and reflection responses, 
and one outcome node containing the overall course grade. There are four background fea-
tures in the first node. The 110 grade scores and maximum of 23 reflection responses (depend-
ing on the individual student) are then spread out over the intermediary weekly nodes. We 
converted reflective surveys from text to numbers using the commercial linguistic sentiment 
analytics tool called Linguistic Inquiry and Word Count, or LIWC (Tausczik & Pennebaker, 
2010). LIWC generates 93 sentiment features as numbers for every input text. Many of these 
features were highly correlated with each other. For this reason, we only chose 18 sentiment 
features with the least correlation to each other. This also improves computational efficiency. 
Therefore, each reflective survey’s text was converted to a vector of 18 sentiment features. 

Analysis
One of the benefits of our sequence data model and analytics is its capability to repeat the anal-
ysis with different salient features in the data model to identify the predictive impact of each 
data category. Based on the model by Mahzoon et al. (2018), salient features are involved in 
the analytics while contextual features are used for interpretability after the analysis. Our three 
main salient features were tests, activities, and reflections. We then experimented with these 
features both individually and together to evaluate their relative predictive impact to help us 
understand the effectiveness and importance of each feature as predictors of success. For each 
salient feature, we ran sequence analytics to classify students at risk of obtaining at- risk grades 
of D, F, or W in the course. Figure 7.4 shows two examples of individual student signatures that 
were generated for successful grades of A, B, or C and at- risk (DFW) students. 

Figure 7.5 shows the averages of all the student signatures in the class grouped by final grade 
category. 

Figure 7.6 shows the averages grouped by successful (ABC) or at- risk (DFW). In all three 
figures, the data include tests, activities, and reflections used to generate the signatures. 

The classification is performed in two phases: training and validation. In the training phase 
of classification, we use the 10- fold cross- validation method (Kohavi, 1995) to split our data 
into training and validation sets. After training, the system output will be validated by repeat-
ing the validation set 10 different times. The performance measures of the analytics were then 
averaged over the 10- fold cross- validation.
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Figure 7.4. Two examples of individual student signatures that were generated for successful grades of A, B, 
or C and at-risk (DFW) students.

Figure 7.5. The averages of all the student signatures in the class grouped by final grade category.
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We evaluated the sequence model incrementally at multiple points in time to assess how 
the temporal model’s accuracy changes over time. Figure 7.7 reports the model’s accuracy for 
the following three salient features: tests, activities, and reflections. 

These features were plotted over time to show how the accuracy improved as more data 
were included. In this figure, the horizontal axis shows the number of weekly nodes included 
in the model, and the vertical axis shows the accuracy of the model as a percentage. For ex-
ample, from Figure 7.7 we can conclude that if we only use one week of the data (e.g., tests, 
activities, or reflections), we are able to accurately classify the risk status of 70% of students. 
This accuracy increases as we include more nodes (i.e., more weeks into the semester) in 
the sequence model. However, the trend of increasing accuracy is not the same for different 
salient features. For instance, having tests as the only salient feature will improve accuracy 
but only up to the four- week point in the semester; on the other hand, having activities as the 
only salient feature produces models with higher accuracies in comparison with tests after 
five weeks of activities. Reflections as the salient feature perform even better than activities 
or tests and can predict at- risk students with 90% accuracy even after having only five weeks 
of reflections. In all cases, the additional benefit for including more information diminishes 
at the halfway point of the course. It is important to try to maximize earlier prediction rather 
than overall accuracy after the middle of the semester. At this early point, there are still op-
portunities to intervene on behalf of the student. Some examples of interventions include: 
helping the student understand patterns of the active learning class and how to prepare, 
working with other students, and learning materials by practicing. It is worth noting that the 

Figure 7.6. The averages grouped by successful (ABC) or at-risk (DFW).
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closest individual salient feature compared to including all features together in Figure 7.7 is 
a reflection- only plot.

Based on our results, we observed that including reflections as a feature improves the accu-
racy of our risk classification model. This shows that including student reflection in a course 
proves to be useful, as we can use them in a predictive model to improve both accuracy and 
time- to- classify student success and risk. Having an improved time- to- classify is important, 
as interventions need to be made early enough to help the at- risk students adjust and make 
improvements toward success. Thus, using student reflections provides additional motivation 
for instructors as they not only improve our risk classification model but can serve as an effec-
tive learning tool for students. 

Our findings are encouraging for integrating reflections into the curriculum. Previous re-
search has investigated reflections as a tool for learning and has cited many different potential 
benefits, such as the development of metacognitive skills (Turns, Sattler, Yasuhara, Borgford- 
Parnell, & Atman, 2014). What we have shown in this work is that, in addition to previously 
explored benefits affecting students, there are also benefits for instructors and administrators. 
For example, they will have the ability to predict the students who may be at- risk early on. With 
that knowledge, instructors can intervene to aid the at- risk students. Furthermore, it is crucial 
that these predictions be accurately made early on so that it is not too late for the student to 
make improvements when those interventions are implemented.

Although our results suggest that reflections were predictive of student success on their 
own, they were most effective when used with traditional features such as tests, activities, 
and assignments. While most features performed well after the first six weeks of the course, 

Figure 7.7. The model’s accuracy for the following three salient features: tests, activities, and reflections.
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reflections served as the earliest predictors of success for students. Hence, it also suggests that 
infusing student reflective practices between activities and throughout the course is effective 
as an early predictor of success. Reflection in CS has the ability to help students think more 
deeply about the course material and make broader connections to other courses and aspects 
of computing. Our work has shown that in addition to these benefits, there are also admin-
istrative benefits that help instructors and teaching staff identify at- risk students sooner and 
more accurately. Our results provide another compelling reason to integrate reflections into 
engineering and CS courses.

Conclusions

Learning analytics provides a broad range of tools to analyze and predict student progress as a 
whole and individually. This provides an opportunity for the course instructors to detect the 
at- risk students in the early weeks of the semester and to intervene in different forms before it 
is too late. Accuracy of learning analytics algorithms significantly increases by infusing more 
feedback points from students. This is in line with the notion of activity- based active learning 
that provides students with many different forms of activities throughout a week. By analyzing 
such data, we are able to predict with some level of accuracy the students who are at- risk of 
failing the course.
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